科研团队开发出高精度硅基半导体量子点

日本理化学研究所的国际研究小组利用硅基半导体制作的量子点成功实现量子计算机所需的操作精度,克服了量子计算机实用化开发的一大技术难题。该成果发表在《自然》上。

量子计算机容易发生计算错误,需要边修正错误边进行超高速计算,为此每个量子点的操作精度需达到99%以上。此前,科学家们采用超导等3种方式达到了这一精度,但硅基半导体量子点2个联动时的操作精度一直止步于98%。该国际研究小组将2个电子封入硅的微小空间内,利用电子的磁学特性创制出量子点,对其采用独创的永磁体与微波组合的技术进行操作,成功达到99.5%的操作精度,并且在2种量子计算实际验证中,获得了高概率的正确答案。

13日从中国科学技术大学郭光灿院士团队获悉,该科研团队实现硅基半导体自旋量子比特的超快操控,其自旋翻转速率超过540MHz,是目前国际上已报道的最高值。研究成果11日在线发表在国际知名期刊《自然·通讯》上。

量子计算在原理上可通过特定算法,在一些具有重大社会和经济价值的问题方面获得比经典计算更强的算力。硅基半导体自旋量子比特以其长量子退相干时间和高操控保真度,以及与现代半导体工艺技术兼容的高可扩展性,是量子计算研究的核心方向之一。该成果中提到的高操控的保真度要求量子比特在拥有较长的量子退相干时间的同时具备更快的操控速率,是全世界研究人员都面对的巨大挑战。

该团队进一步优化器件性能,在耦合强度高度可调的双量子点中完成了自旋量子比特的泡利自旋阻塞读取,观测到了多能级的电偶极自旋共振谱。通过调节和选择不同的自旋翻转模式,实现了自旋翻转速率超过540MHz的自旋量子比特超快操控。

此次技术成果通过建模分析,揭示了超快自旋量子比特操控速率的主要贡献,来自于该体系的强自旋轨道耦合效应。研究结果表明锗硅空穴自旋量子比特体系是实现全电控半导体量子计算的重要候选之一,为半导体量子计算研究开拓了一个新的领域。

该研究成果由中科院量子信息重点实验室副主任郭国平、研究员李海欧与中科院物理所研究员张建军等人和美国、澳大利亚的研究人员以及本源量子计算公司合作完成。本源量子团队技术起源于中科院量子信息重点实验室,是中国国内唯一同时开展低温超导量子计算和硅基半导体量子计算工程化的团队。

本文链接:https://www.dzdvip.com/30308.html 版权声明:本文内容均来源于互联网。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 395045033@qq.com,一经查实,本站将立刻删除。
(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022年3月17日 20:53
下一篇 2022年3月17日 20:55

相关推荐

发表评论

您的电子邮箱地址不会被公开。